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Prediction of three-dimensional structures of proteins and peptides by global op-
timization of the free energy estimate has been attempted without much success for
over thirty years. The key problems were the insufficient accuracy of the free energy
estimate and the giant size of the conformational space. Global optimization of the
free energy function of a peptide in internal coordinate space is a powerful method
of structure prediction that outperforms both Molecular Dynamics, bound by the
continuity requirement, and Monte Carlo, bound by the Boltzmann ensemble gener-
ation requirement. We demonstrate that stochastic global optimization algorithms of
the first order, i.e., with local minimization after each iteration (e.g., Monte Carlo-
Minimization), have a greater chance of finding the global minimum after a fixed
number of function evaluations. Recently, the principle of optimal bias was mathe-
matically justified and the Optimal-Bias Monte Carlo-Minimization algorithm (a.k.a.
Biased Probability Monte Carlo-minimization) was successfully applied to theoreti-
calab initio folding of several peptides, resulting in more than a 10-fold increase in
efficiency compared to the Monte Carlo-Minimization method. The square-root bias
is shown to be comparable in performance with the previously derived linear bias.
A 23-residue peptide of beta-beta-alpha structure can be predicted from any random
starting conformation. c© 1999 Academic Press
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INTRODUCTION

Ab initio prediction of three-dimensional structures of large macromolecules remains the
main theoretical and computational challenge in biology. Most of the globular proteins adopt
a unique conformation in aqueous solution. It is believed that the compact and unique con-
formation of a protein corresponds to the global minimum of its free energy function, at least
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for small, independently folding protein domains [10, 11]. Therefore, to predict the native
folded conformations of a peptide or a small protein one needs to evaluate the free energy
in the vicinity of every trial conformation with sufficiently high accuracy [8, 12] to sepa-
rate the native minimum from billions of low energy alternatives. Furthermore, the native
conformation must befoundin a space of almost 100 dimensions within a reasonable time.

We will argue here that global optimization algorithms, not bound by trajectory continuity
or by the canonical ensemble generation requirements of MD1 or MC, represent the best
approach for solving the protein folding problem. In addition, we will argue that first-
order stochastic global optimization algorithms (which apply full local minimization after
each random move) are superior to zero-order algorithms (which do not). Finally, we will
introduce the optimal bias principle, derive the square-root bias, and demonstrate the speed
and accuracy of the OBMCM algorithm in predicting the native conformation of large
peptides with nontrivial topology.

MOLECULAR DYNAMICS: LARGER STEPS, BETTER SAMPLING

Traditional Newtonian molecular dynamics in Cartesian space remains an important algo-
rithm for sampling the conformational space of peptides [13–15]. This algorithm, optimized
and refined over the years, is best applied to simulations with explicit water molecules. Sev-
eral attempts have been made to predict the native peptide conformation from a “denatured”
state through dynamic simulations in water [13–15]; however, these attempts have had only
limited success. The longest simulation to date is the 1-µs simulation of the villin headpiece
domain which reached a metastable folded state [14].

The requirement for a small time step of integration (about 1 fs) imposes severe limitations
on efficiency. Another factor increasing the computational effort is the accuracy of the energy
function; this accuracy must be sufficient to distinguish the correct solution from billions of
false alternatives, many of which may be very energetically similar to the correct answer.

An important alternative to dynamics in Cartesian space is dynamics in internal coordinate
(torsional) space. The first application of torsion dynamics was limited to linear chains [16]
and was based on Wittenburg’s formalism for connected rigid bodies—which is related,
in turn, to equations derived forn-body space satellites [17, 18]. The general equations
for internal coordinate molecular dynamics of arbitrary fixed branched biomolecules were
first introduced and tested on biomolecules in 1989–1991 [19–21]. Subsequently, two other
implementations of torsion dynamics were proposed and applied to x-ray refinement and
NMR-structure determination [22, 23] and peptide simulations [24]. This method allows
us to easily distinguish between “hard” degrees of freedom, such as bond lengths and bond
angles, and “soft” degrees of freedom such as torsion angles. Fixation of bond lengths and
bond angles allows an increase of the time step of integration to 2–4 fs, and suppression
of fast hydrogen rotations allows another several-fold increase [25] of the minimal time
step. A number of interesting ideas have been proposed to increase the sampling power
of MD simulations and permit larger time steps of integration [26–28]. In the most recent

1 Abbreviations used: BMC, biased Monte Carlo [1]; ECEPP/3, empirical force field for polypeptides
[2–4]; ICM, internal coordinate mechanics [5]; ICMD, internal coordinate molecular dynamics; MC, Monte
Carlo; MCM, Monte Carlo-Minimization [6]; MD, molecular dynamics; OBMCM, BPMC, Optimal-Bias Monte
Carlo-Minimization Bias (a.k.a. Biased Probability Monte Carlo-minimization), a quickly converging stochastic
global optimization method using random moves derived from the expected local probability distributions [7].
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implementation the update time of the “slow forces” was increased to 48 fs or more, which
corresponds to a 10-fold increase in efficiency [26].

MONTE CARLO

In most cases, the native protein structure important for biological function can be con-
sidered one unique conformation in the mean field of the solvent, rather than a truly dynamic
system. In other words, one can introduce a pseudo-free-energy potential that is a function
of the peptide conformation. Therefore, a traditional Monte Carlo method—the primary
goal of which is the generation of a Boltzmann ensemble—may be replaced by an algo-
rithm aimed at the fastest possible identification of the lowest energy minimum. The latter
is the primary goal of global optimization methods. A Monte Carlo method can also be
designed to allow better sampling of the phase space [29], but the requirement of canonical
ensemble generation defeats the purpose of efficient global optimization. An easy example:
for a single harmonic well, a Monte Carlo method will need to calculate at least several
dozen values until the convergence criterion is met, while a local minimization method can
find the potential energy minimum in a single step. In the case of a rugged energy landscape
the goals and the strategies are still different, since instead of sampling all the low energy
patches of the hyper-surface, the global optimization is only aimed at finding the shortest
path to the global minimum.

As we have noted, the native conformation is largely unique with the exception of some
flexible surface side chains and surrounding water molecules. Therefore, if the free energy of
solvent can be calculated implicitly for every trial conformation based on the electrostatic
and surface effects, the free energy of a folded and solvated conformation can be well
approximated by a function of a single conformation! An additional assumption is that the
vibrational entropy differences between possible folded conformations are not large. If an
explicit water model is used, and/or the peptide conformation is essentially dynamic (e.g.,
no particular backbone conformation dominates the statistical sum), conventional Monte
Carlo or molecular dynamics methods become more appropriate.

Which approximation of the solvent in a peptide simulation, explicit or implicit, is more
accurate? Clearly the implicit method is faster, but is it less accurate? The answer to this
question is still not clear. On one hand, explicit water can potentially take the effects of
finite molecular size into account (e.g., form a bridge of a certain length between hydrogen
bonding groups). On the other hand, the problems and inaccuracies they introduce can
outweigh the benefit. Let us list them: a large increase of the system size (thousands of
water molecules); inaccuracies due to insufficient sampling; truncation of the electrostatic
interactions or artificial boundary conditions; and limitations of the simple electrostatic
and polarization model of a single molecule. The continuous electrostatic models [30, 31],
however, are free from the above problems. They automatically consider an infinite shell
of solvent and its electrostatic properties to be directly described by the experimentally
measured dielectric constant.

STOCHASTIC GLOBAL OPTIMIZATION, OBMCM

A global optimization can reach the minimum much faster than a Monte Carlo procedure
simply because the detailed balance condition, compulsory for the Monte Carlo procedure
but unimportant for global optimization, is dropped. Therefore, an efficient local energy
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optimization, the fastest way to identify the local minimum, can be used. Even the most
sophisticated molecular dynamics and Monte Carlo algorithms could still only be applied
to sample either the neighborhood of known protein conformations or a complete confor-
mational space of rather small peptides. Typically, when using the above methods one had
problems with predicting a new peptide or loop conformation from scratch without know-
ing the answer. Our goal, however, is to predict the lowest energy conformations of large
peptides and protein loops from scratch without any prior structural information.

A number of stochastic global optimization methods have been developed [32]. They can
be divided into methods with (first-order) and without (zero-order) local minimization after
each step. These methods may be further subdivided according to the way in which random
moves are made, their temperature scheduling, and their use of simulation history. The
sampling bias, aimed at faster convergence, can be done according to the experimentally
observed preferences [1, 7, 33] defined either as a continuous function [7] or as a discrete
grid function [1, 33]. Another productive idea aimed at improved sampling is to make local
backbone moves [34, 35], or restrict the random moves according to the kinetic escape time
estimate (the so-called diffusion process-controlled Monte Carlo method [36]). Several ex-
cellent reviews of other zero-order Monte Carlo methods, which are not specifically aimed at
the global optimization of a pseudo-free-energy potential, were published recently [29, 37].

Generally all the stochastic methods with minimization outperform the methods with-
out local minimization (similarly the efficiency of a local minimization method critically
depends on the use of energy derivatives). Indeed, the introduction of the Monte Carlo-
Minimization (MCM) method [6] was a major step forward. With MCM it became possible
to identify the global minimum of Met-enkephalin in fewer than 100,000 energy evaluations.
However, larger peptides—especially in a non-alpha-helical conformation—still required
a prohibitively large number of energy evaluations.

The next radical step forward was extension of the MCM method with the principle of
optimal bias (OBMCM, a.k.a. BPMC). The goal of the optimal bias is to usea priori infor-
mation about local probability distributions in the best possible way in order to minimize the
number of random steps to the global minimum. For macromolecules the algorithm relies
on the assumption that the local energy landscape due to local sequential interactions in a
peptide is perturbed in a quasi-random way by non-local interactions that are comparable
in magnitude. This assumption leads us to the formulation of a simple stochastic model and
the square-root bias rule [38] (see the next section).

BENCHMARKS

To optimize and test new energy functions and global optimization methods, we rely
on experimentally characterized peptides with compact unique topologies supported with-
out disulfide bonds and metals. Until recently there were not many suitable candidates.
Most small peptides remain unfolded in aqueous solution; among those peptides which
do assume a specific conformation, the majority adopt a simpleα-helical conformation
[39]. Fortunately, several beta-forming peptides and the smallest compact mixed-topology
peptide [40] (BBA1) have been discovered. The 23-residue BBA1 peptide contains the syn-
thetic residue 3-(1,10-phenanthrol-2-yl)-L-alanine (Fen), and was later replaced by another
23-residue peptide (BBA5) which contains no synthetic amino acids and forms a stable
beta-beta-alpha structure [9]. BBA5 became the smallest protein-like folded peptide and
provides the ideal benchmark for the evaluation of theoretical folding algorithms.
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The geometrical model used in all calculations is the extended internal coordinate model
(ICM) [5]. This model is convenient for tree-like branched polymers and may be applied to
any number of arbitrarily interacting molecules. A typical ICM system will have all covalent
bonds lengths and bond angles fixed; torsion angles that are not involved in rigid rings are
free. Analytical equations of motion have been derived for an arbitrarily constrained ICM
tree, together with equations which permit the efficient calculation of pair-wise energy terms
with respect to free internal coordinates [5, 19].

The required accuracy of the energy function was estimated as less than 1 kcal/mol per
residue [8]. To achieve this accuracy we have previously used full-atom models, the ECEPP/3
vacuum force field [2–4], improved electrostatic solvation [7], and solvent-accessible
surface-dependent estimates of side chain entropies [7]. This function worked well in
simulations of 12 and 16 residue helices and with the BBA1 peptide, but we noticed in
a number of BBA5 and beta hairpin simulations that the function is biased toward alpha
helices.

To find the global energy minimum of the target peptides, we used a Monte Carlo
minimization-based global optimization algorithm [6] in conjunction with a special set
of biased random moves. In previous studies that employed Monte Carlo-based algorithms,
investigators have focused on simulation temperature schedules [41] and the acceptance
criteria (e.g., [42]). Several years ago we first suggested that the rational design of random
moves is the key to a radical increase of the sampling efficiency [7]. A strategy was out-
lined for dividing the internal coordinates into groups of strongly coupled variables (zones),
and it was proposed that the random moves could be biased according to a pre-calculated
continuous local probability distribution. In addition, we derived the statistically optimal
algorithm to bias the random move within the zone.

Here we discuss different aspects of an efficient stochastic global optimization technique
for large molecular systems and present theoreticalab initio folding of the detailed atomic
model of the BBA5 peptide with the BPMC procedure.

INTERNAL COORDINATES

When we predict the conformation of a large flexible molecule, we must do it in the
right space. The choice is the following: Cartesian coordinates, torsion angles, a full set
of internal coordinates, and the inter-atomic distances. We will focus on the third choice,
which is ideally suited for imposing the covalent structure constraints and generating natural
conformational rearrangements for multi-molecular arbitrarily fixed systems.

The general scheme of the ICM tree is shown in Fig. 1. In this model atoms are constructed
sequentially from the origin as a directed graph, while the preceding bond length, a bond
angle, and a dihedral angle define the geometrical position of each node. This dihedral angle
can be of two types at a branching point. The dihedral angle defining the “main branch”
will be referred to as a torsion angle and is usually free, while the difference between the
above torsion angle and the dihedral angle defining the secondary branch will be referred to
as a phase angle and is usually constrained. This choice of independent internal coordinates
makes setting of chemical constraints trivial.

Accordingly, the BBA5 molecule (chemical structure Acet-Tyr-Arg-Val-DPro-Ser-
Tyr-Asp-Phe-Ser-Arg-Ser-Asp-Glu-Leu-Ala-Lys-Leu-Leu-Arg-Gln-His-Ala-Gly-COOH)
is represented by a directed graph in which all bond lengths, bond angles, and phase angles
are constrained. The number of free torsion angles is 129. This number includes the peptide
planeω angles that are restrained by the torsion potential to 180◦ but are free to change.
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FIG. 1. An internal coordinate representation of one or several molecules in which any subset of bond lengths,
as well as bond, phase, and torsion angles which determine the directed tree-like graph, can be constrained. The
graph can contain virtual atoms and bonds. The first six internal coordinates determine the rotation and translation
of the whole molecule. Analytical derivatives of a pair-wise energy function with respect to the four types of
variables for such an object are given in [5, 19, 20] and the equations of motion are given in [19–21, 25].

The number of essential backbone torsion angles is 45. The model contains 385 atoms and
includes hydrogen atoms.

Evenly distributed random values are assigned to all the free torsion angles, except the
ω angles, to generate the initial conformation for each simulation.

ADDITIONS TO THE ECEPP/3 POTENTIALS AND ELIMINATION

OF THE α-HELICAL BIAS

The BBA5 23-residue peptide has about 70 essential degrees of freedom; yet it folds into a
uniqueβ-β-α arrangement. Previously, we argued [8, 12] that a highly accurate free energy
evaluation(<1 kcal/mol) for each trial conformation is necessary to recognize the native
state among zillions of alternatives. To meet this requirement we introduced corrections
in the all-atom vacuum force field ECEPP3 [2–35], and appended to it the solvation free
energy [7] and the entropic contribution [7],

E = Evw + Ehbonds+ Etorsions+ Eelectr+ Esolv+ Eentropy.

The individual terms are calculated as follows.

Evw =
∑
i, j

(
Ai j

d12
i j

− C Bi j

d6
i j

)
,

Ehbonds=
∑
i, j

(
A′i j
d12

i j

− Di j

d10
i j

)
,
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wherei, j are a pair of atoms separated by less than 7.5Å and more than two chemical
bonds;di j is an inter-atomic distance;A, B, A′, andD are parameters for each two atom
types; andC is 0.5 for a pair separated by three bonds and 1 otherwise.

Etorsion=
∑

torsions

Um cos(nφ − φ0),

Eelectr=
∑
i, j

332qi qj

εdi j
,

whereqi are electric charges, distance-dependent dielectric constantε= 4 · di j , andUm are
individual torsion barriers. The solvation contribution in this simulation was calculated as
a sum of products of solvent-accessible surface areas (ai ) by the solvation energy densities
(σi ) derived from the water–vacuum transfer energies [8],

Esolv =
∑

i

σi ai .

Finally, the entropic contribution from the protein side chains is calculated from the maximal
burial entropies for each residue type and their relative accessibilities,

Eentropy= −RT
∑

residueρ

1Smax
ρ aρ

/
amax
ρ .

A number of simulations with peptides of different topologies convinced us that the current
form of the ECEPP3 force field has a bias toward alpha helices. To compensate for this
bias we imposed a soft torsion potential on the backboneψ angle: 0.5(1+ cos(90+ψ)). A
stronger torsion potential of 1 kcal/mol amplitude was applied to Val, Ile, and Thr residues.
The corrected potential was used for simulations with all peptides, including theα-helical
ones. Without the correction the lowest energy conformation of most of the peptides that
we simulated is dominated by oneα-helical element.

DERIVATION OF THE OPTIMAL BIAS

Several years ago we introduced the idea of the optimal bias in a Monte Carlo-based
stochastic global optimization procedure. This procedure increased the efficiency of the
peptide structure predictions by at least an order of magnitude [7].

Let us pose a mathematical problem of the optimal bias in random sampling specifically
directed at finding a single right answer, and give a solution in three guessing games. The
underlying model we have in mind is a chain molecule described as a set of torsion angles
xi , where eachxi is either a scalar representing an individual angle or a vector representing
several correlated angles (asψ-φ backbone angles or a group of side chain angles). One
can see, however, that the consideration below is general and is applicable to a wide class
of global optimization problems.

Game 1 (always bet on the best).Suppose that we are guessing values of only one
vector x which is distributed according toS(x). How should we guess to maximize the
probability of the correct guess? In a continuous case this is equivalent to finding a function
f (x) maximizing the integral〈P〉,

〈P〉 =
∫

S(x) f (x) dx,

under the normalizing condition,
∫

f (x) dx= 1.
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The answer is trivial and uninteresting. Actually we should always guess the same most
likely valuexSmax ( f (x)= δ(x − xSmax)). This sampling strategy is obviously not very pro-
ductive, since it does not really correspond to what we expect from a global optimization
procedure, which is to predict all the variables correctly. In this game we will always be
guessing the same value and even though the probability of the correct guess in each case
is maximal, we will never be successful with any value other than the most probable.

Game 2 (linear bias). In the second guessing game we are trying to find the best
guessing probability functionf (x) to achievesimultaneousprediction ofn x-values with
certain accuracyh(x, x0), given the fact thatx0

i -values are distributed according to a known
distributionS(x).

It has been shown [6] that the guessing (or sampling) probability function maximizing
the product ofn integrals,

P =
n∏

i=1

∫
h
(
x, x0

i

)
f (x) dx,

is actually identical to the expected probability distribution,f (x)= S(x).

Game 3 (square root bias).Here we are actually going to guess many times until we
get the correct answer and we assume that it can be done independently for eachx. It can
be proven that the functionf (x) minimizing the average number of guesses required to
find the correct answer is a square root of the distribution functionS(x). f (x)=C

√
S(x)

( f (x) normalized to 1 after the root is taken).
Let us derive the optimal sampling strategy for the simplest case of two states (see [31]

for a complete description). To derive the rule, we must formulate a different criterion of
optimality (the objective function).

The guessing problem formulated in this way can be understood even in the case of two
fixed choices. Let us imagine the following game: each time you are given one of two
choices and you guess until you are right, but every time youforgetyour previous choice.
(Independence of the previous selection is actually well justified in the real case in which
the environment of each residue changes after each step/guess.) After the problem is solved
and the number of your guesses is recorded you are given another problem, and so on, and
the two types of choices are offered with frequenciess1 ands2, respectively(s1+ s2= 1).

THEOREM. The optimal random guessing strategy minimizing the average number of
guesses is to guess with relative frequencies f1 and f2 so that

f1

f2
=
√

s1

s2
.

Proof. Let us calculate the average number of guessesNguessesuntil the correct answer
is given, provided that previous guesses are forgotten and thus each guess is independent.
If in our random guessing strategy the probability of a correct guess in a single trial is
f , and the successful result can be achieved through the first correct guess(p1= f ), the
first incorrect guess and the second correct guess(p2= (1− f ) f ), the first two incorrect
guesses and the correct guess(p3= (1− f )2 f ), etc., the average number of guesses reads

Nguesses= p1+ 2p2+ 3p3+ · · ·
= f + 2(1− f ) f + 3(1− f )2 f + · · · + n(1− f )n−1+ · · · = 1/ f,
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since each member of this series divided byf is a derivative ofxn, wherex= (1− f ), and
the series 1+ x + x2 + x3 + · · · + xn converges to 1/(1− x) asn tends to infinity. After
taking the derivative and multiplying it byf we arrive atNguesses= 1/ f .

Now, in the case of two choices, we will guess the first choice with unknown probability
f1 and the second choice withf2= 1− f1. The average number of guesses reads

〈Nguesses〉 = S1/ f1+ S2/ f2.

To derive the optimalf1 and f2, let us set the derivative of〈Nguesses〉 with respect tof1 to 0:

S1
/

f 2
1 − S2

/
f 2
2 = 0,

or

S1
/

f 2
1 = S2

/
f 2
2 ,

or

f1/ f2 = (S1/S2)
1/2.

This sampling strategy is also valid for multiple discrete states as well as for a set ofn
continuous variables [31].

DESIGN OF RANDOM MOVES

In the previous section we concluded that by biasing the random steps according to the
expected local probability distribution we improve the efficiency of the stochastic global
optimization procedure. Since we are optimizing tree-like branched polymers described
geometrically by a set of internal coordinates, the next question is how to divide all the
internal variables into groups (further referred to as zones). We will assign an expected
probability distribution to each zone according to the structural preferences in the database
of several thousand known protein structures or according to a short calculation on the
fragments of a given peptide. The simplest choice is to change one angle at a time and
use a square root of an average distribution of this type of angle, as found in numerous
known protein structures or in a separate calculation, to determine its sampling probability.
However, by choosing zones of several correlated angles (for example, the backboneψ and
φ angles) we can further improve the accuracy of the expected probability distribution and
therefore improve the sampling efficiency [7].

Previously we implemented three types of random moves that allowed us to consider
three types of optimization problems such as:

• ab initio peptide folding (zone move: global change of an individual group ofψ-φ
angles or the side chainχ -angles),
• loop prediction in homology modeling and design (loop move: local loop rearrange-

ments of two types; Fig. 2),
• molecular association (pseudo-Brownian move: incremental rotation and translation

of the whole molecule; Fig. 2).

The zone and loop moves are intramolecular, while the pseudo-Brownian move is necessary
for sampling of intermolecular arrangements. Let us introduce the essential properties of
random moves. If the move is generated regardless of the current geometry, we will call it
static, while the move taking into account the changing geometry will be calleddynamic.
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FIG. 2. The types of random moves used in ICM.

An example of the static random move is changing a randomly chosen torsion with an
amplitude of 90◦ [43]. An example of a dynamic move is changing torsions with prob-
abilities depending on the current secondary structure. It is also important to discriminate
betweenlocal and distributedmoves (changing one local group of variables or two or
more groups at a time, respectively), andcorrelatedanduncorrelatedmoves (angles in one
or several groups are changed in concert or independently, respectively). Finally, random
moves may be eitherdiscreteor continuous.

While the zone and loop moves, which are correlated and continuous, greatly improve the
rate of convergence for peptide and loop simulations [44], they do not optimally cover the
whole range of essential molecular rearrangements, since they change only one local group
of variables at a time. In the first class the group consists of several adjacent unconstrained
torsion angles in the tree, while in the second case a larger, but still contiguous, chain
fragment is deformed under the constraint that the loop ends do not change their position.
These moves therefore are local and static, since they only change conformation of a local
contiguous fragment and do not depend on the current conformation.

The local correlated moves are efficient in foldingα-helices and short compact loops.
However, beta sheets or long loops which require simultaneous movement of the two non-
adjacent chain fragments cannot be efficiently sampled without correlated and distributed
moves. Two types of such moves are described here: a bipartite loop move and a beta-zipping
move (Fig. 2).

In the one-partite loop deformation moven adjacent angles(n> 6, n≤ Nloop torsions) are
chosen and a random biased move is performed according to the residue-dependentψ-φ
probability distributions, followed by a loop closure procedure. In the bipartite loop move,
thenψ-φ angles are divided into two groups separated by a random number of intervening
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FIG. 3. Four types of theβ-zipping move. If one of the patterns shown is identified, a temporary distance
restraint is imposed to extend theβ-hairpin.

angles and then the biased change and the closure procedures are performed. To facilitate
formation of beta sheets we applied another type of random move, a beta-zipping move.
After the random initial choice of the residue of interest, the hydrogen bonding neighbors
are identified. The four situations of interest are shown in Fig. 3. If such a neighbor exists, a
geometrical rearrangement of both strands is generated to form the missing hydrogen bond
and extend the beta structure. This move is distributed since both strands are changed at
once and correlated since the severalψ-φ angles are changed at once.

TEMPERATURE, ACCEPTANCE RATIO, AND DISADVANTAGES

OF SIMULATING ANNEALING

The Metropolis acceptance criterion states that a new trial conformation with higher
energy will be accepted with the probability of exp(−1E/RTsim), whereTsim is the simula-
tion temperature and1E is the energy increase. During global optimization the simulation
temperature can be independently tuned for the best performance. The meaning of this
parameter in stochastic global optimization is the energy accuracy required to recognize
the global minimum. The Metropolis selection procedure is likely to reject the energy rise
of RTsim and, therefore, it “insists” that a new conformation in this energetic vicinity be
generated and evaluated. Simulation at a higher temperature samples more widely and has
a larger acceptance ratio, but spends less time in each location, while simulation at a lower
temperature does the opposite.
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The ultimate test of the MC global optimizers is their ability to identify as many as
possible low energy minima in a minimal number of energy evaluations starting from a
random conformation [45]. The optimal simulation temperatureRTsim can be found for a
given representative benchmark [45]. In [45], a complete map of low energy states was built
and then the number of local minima in a 20 kcal/mol range from the global minimum was
counted as a measure of global optimization efficiency. The optimal simulation temperature
was found to be about 600 K(RTsim is about 1.2 kcal/mol). Both lower temperatures and
higher temperatures are less efficient in identification of the energy minima.

In simulated annealing the temperature is gradually reduced according to a predetermined
schedule. The high temperature part of the simulation allows crossing of large energy
barriers and therefore samples broadly but without rigorous refinement in each vicinity.
Conversely, the low temperature part of the simulation constrains the molecule to the vicinity
identified by the high temperature calculation, thus allowing determination of its exact
conformation and its energy. However, this scheme is extremely vulnerable. First, it depends
on preexisting knowledge regarding the exacttimerequired to identify the global minimum.
If we underestimate the time and cool the system off too quickly, the molecule becomes
prematurely frozen in an unrelated conformation, while if the cooling schedule is too slow
the simulation is conducted at an inefficient high temperature, which impedes its ability to
identify deep local energy minima. Second, simulated annealing relies on the assumption
that the high temperature coarse-grained calculation in its walk through different low energy
valleys will end up in a valley containing the lowest energy minimum, which is not clear
until the lower temperature refinement is done. The global optimization procedure at a
moderately elevated but constant temperature (e.g., 600 K) gives an equal chance to each
valley visited and, especially with a proper history-feedback mechanism, does not suffer
from this impediment.

HISTORY-FEEDBACK MECHANISMS

Both the full simulation history and its recent history can be used to enhance the global
optimization efficiency. We will consider three undesirable situations that are commonly
encountered during optimization, and will describe actions that improve the performance.

1. Too many unproductive trials.A frequent “recent-history” problem is inability of
the procedure to make a move, i.e., find an acceptable new conformation at a given tem-
perature. Although a certain degree of persistence is necessary, it may be beneficial to
provide an “escape mechanism” to avoid excessive searches in an unproductive region of
conformational space [45]. By counting the number of sequentially rejected moves, one
can determine whether the search procedure has stalled and take appropriate action. Several
escape mechanisms can be envisioned. We found that a temporary temperature raise after
the achievement of the upper limit of unaccepted trials(N1) improves the performance.
The temperature is doubled afterN1 unproductive steps and is reset to normal after a new
conformation is accepted.

Before describing the other two scenarios, we need to introduce the concept of a “con-
formational stack.”

Conformational stack of the best representative conformations.In any sampling pro-
cedure going through millions of conformations it is useful to accumulate a condensed set
of the best representative conformations. Such a conformational stack, first described in
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[45], is useful for visualization and analysis, but, more importantly, it can also provide a
useful feedback to the search procedure in a difficult situation. To build the stack, we need
to define the metric in the conformational space. The difference between each two con-
formations must be quantitatively expressed by a relevant distance function. We use three
types of comparison depending on a particular modeling task: (1) the root-mean-square de-
viation (rmsd) of the essential torsion angles (appropriate in peptide folding calculations);
(2) Cartesian coordinate rmsd of essential atoms (appropriate in protein loop simulations
or docking against a static receptor); and (3) Cartesian rmsd upon optimal superposition of
the essential atoms (appropriate in small molecule sampling or in peptide simulations).

The conformational stack, which retains only the best energy conformation within a given
conformational vicinity, evolves gradually during the simulation. Each new conformation
is compared with the previously stored stack conformations; if it is not in the vicinity of
any stack conformation, the new conformation is added to the stack. If it is similar to an
existing stack conformation, however, it must compete with the existing conformation and
will replace it only if it possesses a lower energy. It is indeed like biological evolution
in which fitness is determined by the energy and only the fittest conformation survives
each location. If the vicinity radius is too small the number of stack conformations will
be exceedingly large. Limitation of the number of slots will result in only one family’s
dominating the stack. If the radius is too large, one conformation will absorb all the others
and the diversity will not be visible. In peptide simulation we use the radius of 30◦.

2. Too many visits to the same vicinity.A search stuck in a small region of conformational
space stays in the vicinity of the same stack conformation but does not improve it. In other
words, new conformations are found and accepted (as opposed to the previous case), but
these conformations are around a known conformation and are energetically inferior to it.
The conformational stack counts the number of fruitless visits to the same slot and resets
this number to zero if a better energy conformation is found to replace the previously stored
one. A good remedy in this case is to force the escape from this over-visited vicinity by
randomizing free torsion angles. We use the amplitude of 30◦.

3. Inability to improve the stack.The stack should be kept at a relatively small size during
the simulation (around a hundred slots), since a comparison with each stack member must
be performed for every new conformation that passes the Metropolis criterion. Therefore,
the evolution of conformational species will take place within the limited number of slots.
Every conformation in a new geometrical vicinity has a chance to replace the highest energy
stack conformation, if the new energy is lower. If it does not happen and the search wanders
in some high energy areas, not generating any changes in the stack (neither new slots, nor
improvements of existing slots, nor increase of the number of visits in the existing stack
conformation), the “high energy walk” is interrupted. We established the optimal limit
of 50 high energy steps. Once the limit is exceeded the procedure returns to one of the
under-visited conformations from the stack.

THE SETUP OF THE OBMCM OPTIMIZATION PROCEDURE

Each simulation starts from a completely random conformation (i.e., random numbers
between−180◦ and 180◦ are assigned to each variable torsion angle) and ends when the
number of function evaluations reaches its limit or the termination criterion is met (see
below). The energy optimization of a single peptide consists of the following procedures:
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1. Biased random move in a randomly chosen group of angles (OB-moves and beta-
zipping moves).

2. Local energy minimization of the whole molecule
3. Calculation of the solvation energy and entropy for the minimized conformation
4. Metropolis selection (temperature increase if the rejection limit is reached)
5. Comparison of the accepted conformation with the stack (possible history feedback)
6. Back to step 1.

We used the following parameters: simulation temperature of 600 K, a set of local amino
acid-dependent probability distributions for the backboneφ-ψ angles and the side chain
torsion angles as previously described [7]. Conformations were compared with the angular
rms ofψ, φ angles and the vicinity threshold of 30◦was applied. The simulation temperature
was doubled upon 10 sequential rejections; the local randomization with 30◦ amplitude was
applied after the same stack conformation was visited more than 40 times; and the current
conformation was reset to the least visited stack conformation upon 50 unsuccessful trials to
modify the stack. These parameters were found by trial and error in a large number of peptide
simulations. The ECEPP/3 force field was used with the modifications described in the
preceding section. Following local minimization, the atomic accessibility-based solvation
energy was calculated (the atomic radii and solvation energy densitiesσi are described
elsewhere [8]). The side chain entropy parameters1Smax andamax for each residue were
taken from Ref. [6]. Simulations converged after about 5–7 days using a single SGI R10000
processor (250 MHz).

TERMINATION CRITERION

The OBMCM procedure for global optimization is still a stochastic procedure and, as we
said earlier, one does not know in advance how long it takes to find the global minimum.
This average convergence time, even at the same number of independent variables, depends
strongly on the geometry of the native conformation. The interaction energy between molec-
ular fragments may be sufficient to create rather strained and unlikely local conformations,
which aggravate the search. Therefore, the best setup of the global optimization procedure
is the one which does not rely heavily on the expected convergence time.

One way to achieve this setup is to start several parallel calculations which periodically
save their conformational stacks. Since every calculation starts from a completely random
configuration and the size of the conformational space is exceedingly large, close similarity,
both in terms of the energy values and in terms of geometry, between the lowest energy
conformations retained in two or more stacks is a good indicator of convergence. Typically
we execute 5–10 runs for a given peptide; if about half of these reach the same lowest
conformation, we assume that the global minimum has been reached.

COMPARISON WITH SOME OTHER MC METHODS

To compare the global optimization efficiencies one could estimate the average num-
ber of energy evaluations required to identify a native-like conformation with sufficiently
low conformational energy. First, we compared four zero-order algorithms of random step
generation: changing one randomly selected variable at each step with various ampli-
tudes; changing two or more coupled variables with 180◦ amplitude; and MD-like random



416 ABAGYAN AND TOTROV

FIG. 4. The fraction of successful runs of OBMCM [7], BMC [1], and MCM [6] simulations as a function
of the number of energy evaluations. The success is defined as identification of a conformation with the correct
hydrogen bonding pattern and the energy gap from the global minimum energyEmin less than 3 kcal/mol. For the
BMC simulations, no successful run was found within 4× 106 energy evalutions.

movements of all variables with small amplitudes. Simulations of theα-helix and aβ-
hairpin peptide indicated that a zero-order optimal-bias MC algorithm yielded both larger
rmsd’s and larger acceptance ratios than all the unbiased categories (Table 2 in [38]).

To analyze the effect of the optimal bias on the simulation efficiency three representative
MC global optimization methods were analyzed recently in [38]. In that work, theab
initio simulation of a 12-residueα-helix and a 12-residueβ-hairpin were used to compare
OBMCM, BMC zero-order optimization [1], and MCM first-order optimization [6]. For
each method the results of 10 independent simulations, starting from a random set of dihedral
angles, were averaged. The performance of OBMCM, measured as the time required to reach
the 50% success rate, was one order of magnitude better than the performance of MCM and
about two orders of magnitude better than that of BMC (Fig. 4).

We also compared the OBMCM performance with that of the diffusion process-controlled
MC algorithm (DPCMC) [36]; however, the comparison was complicated by substantial
differences in the molecular representation and the energy function between the two meth-
ods. We implemented the DPCMC three-step conformation generation scheme [36] and
performed the simulation for the all-atom model of the 16-residue peptide [39]. The pre-
liminary results using DPCMC (Fig. 5) did not show a drastic performance enhancement
over the OBMCM step generation scheme; however, the inferior performance of DPCMC
in our test may be due to the implementation details.

SIMULATION OF α, β, AND ββα PEPTIDES

After some efforts to improve the ECEPP3 energy function and the solvation model we
were able to predict peptides with different secondary structures using identical procedures
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FIG. 5. The best energies achieved in the DPCMC and OBMCM simulations for a 16-residueα-helix peptide
as a function of the number of energy evaluations. We performed the DPCMC simulations at 500 K with and without
temperature adjustments proposed in [44]. The adjustments algorithm temporarily doubles the temperature if more
than 10 trial conformations were rejected in a row. Each presented curve was the average of four independent
simulations from random starting conformations.

and energy functions. The examples include 12- and 16-residue helical peptides [7, 38], 9-
and 12-residueβ-hairpins [8, 38], and the originally designed 23-residueββα peptide [8]
containingD-proline in the fourth position and a phenanthrol side chain in the sixth position
[40]. Here we report a structure prediction of a new 23-residueββα peptide, which contains
only the standard amino acids [9].

Figure 6 shows a series of snapshots taken at different time points during one of the
simulations. Each of the four simulations started from a different totally random conforma-
tion. Up to 13,000,000 energy evaluations were allowed. Three of four simulations found
the lowest energy conformation with an accuracy of 3 kcal/mol. The fourth simulation was
stuck at higher energy conformations. The temperature was doubled from 650 to 700 times
(i.e., the consecutive rejection limit was reached, on average, once per 100 random moves)
during each simulation. In all simulations we observed that the C-terminal helix found
the lowest energy conformation earlier than theβ-hairpin. The amount of helicity varies
in the set of low energy conformations but most of the conformations have at least a
part of the C-terminal helix. The short beta hairpin at the N-terminus is less pronounced
and is present only in a fraction of the low energy conformations, including the lowest
energy one. We found many low energy conformations in which the hairpin adopts dif-
ferent conformations or packs differently. The stabilization gap between the lowest energy
ββα conformation, and the lowest energy conformation with a different topology in which
both theβ-hairpin and a turn of the C-terminal helix lose their secondary structures, is
6.8 kcal/mol.

Unfortunately, the experimental structure of the BBA5 peptide is not available for direct
comparison. In the minimal energy conformation (i) the C-terminal helix spans residues
from 12 to 20 (exactly the same range is observed in the experimental structure, the backbone
rmsd with BBA1 is 0.4Å, all-atom rmsd is 1.8̊A); (ii) the β-hairpin spans residues 2 to
7 (the same as the range in the experimental structure), and the rmsd with BBA1 values
are 0.6 and 1.0̊A for the backbone and all atoms, respectively. However, the packing of



418 ABAGYAN AND TOTROV

FIG. 6. A series of low energy conformations of the 23-residue peptide (BBA5), and the lowest energyββα-
conformation. The rms deviation from the minimal energy conformation is shown (the experimental structure of
BBA5 is not available).
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the hairpin onto the helix in the predicted BBA5 conformation is shifted compared to the
BBA1, with the global rmsd equal to 3.8̊A. Despite the packing problems, the observed
similarity between the minimal energy conformation for BBA5 and the NMR structure of
BBA1 [9] is encouraging.

CONCLUSIONS

The Optimal Bias Monte Carlo-minimization, featuring an improved energy function and
an extended set of random moves, can identify the unique global minimum of a 23-residue
peptide (containing 70 essential torsion angles and 385 atoms) after starting from a set
of random torsion angle values. Two principal parts of this minimal structure correspond
with high accuracy to the known experimental three-dimensional structure of the peptide;
however, the packing of these parts differs from the experiment. To our knowledge, no
other procedure is capable of finding this conformation from a truly random start. One
calculation takes about 200 h on a single R10000 processor. An identical energy function
and the simulation procedure also predict anα-helical and aβ-hairpin peptide [8, 38]. A
minor improvement of the energy function combined with a teraflop supercomputer might
be sufficient forab initio predictions of small proteins.
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